

TauREx 3.1 - A true exoplanet retrieval framework

[image: image1]

TauREx 3 (Tau Retrieval for Exoplanets) is an open-source
fully bayesian inverse atmospheric retrieval framework licensed
under BSDv3.
It aims to make exoplanetary atmosphere modelling and retrievals
fast, easy and flexible!

TauREx 3 offers a fully customizable framework that allows you
to mix and match atmospheric parameters and add in your own to
perform modelling and retrievals.

For scientists, the standalone taurex program provides a wealth
of parameters to build forward models, simulate instruments and
perform retrievals.

For developers, TauREx3 provides a rich library of classes to
build your own programs and any new atmospheric parameters you
create can be used in the standalone program like it was always there!

TauREx3 can be expanded

If you use TauREx 3 in you work, please see the guide to Citation.

Want to install it? Head here: Installation

Want to jump into the taurex program? Head here: Quickstart

Want to try out the library? Try here: Library

	Release

	3.1.4-alpha

TauREx 3.1 User Guide

This guide covers general installation, using
the standalone taurex program and the library

	Introduction

	Installation
	Installing from PyPi

	Installing from git source directly (platform-independent)

	MPI

	Supported Data Formats
	Cross-sections

	K-Tables

	Observation

	Collisionally Induced Absorption

	taurex program
	Quickstart

	Input File Format

	Custom Types

	Global Settings

	Chemistry

	Temperature

	Pressure

	Planet

	Star

	Forward Models

	Observation

	Binning

	Instrument

	Fitting

	Derive

	Mixins

	Optimizer

	Plotting

	Plugins
	Finding Plugins

	Using Plugins

	Building Plugins

	Library
	Quickstart

	Index

Introduction

TauREx (Tau Retrieval for Exoplanets) is a fully bayesian inverse atmospheric retrieval framework.
TauREx is a very extensive retrieval framework with a wide range of functionalities. TauREx3 is the
next-generation of the atmospheric retrieval code. It acts as both a retrieval code and as a library
that provides functionality relating to atmospheric modelling. The user is free to mix and match and
use whatever needed.

The aim of TauREx3 is for anyone to come in an put in their own physics/models/chemistry
and then perform a retrieval on it with the minimum of effort.

Installation

TauREx3 only works with Python 3.5+. If you need to use Python 2.7 consider using TauREx2 [https://github.com/ucl-exoplanets/TauREx_public].

Installing from PyPi

Simply do:

pip install taurex

To test for correct setup you can do:

python -c "import taurex; print(taurex.__version__)"

Additionally, to restore the equilbrium chemistry and BHMie from TauREx 3.0 you can
run:

pip install taurex_ace taurex_bhmie

Installing from git source directly (platform-independent)

You can directly get the most cutting-edge release from the repo:

pip install git+https://github.com/ucl-exoplanets/TauREx3_public.git

You can also clone TauREx3 from our main git repository:

git clone https://github.com/ucl-exoplanets/TauREx3_public.git

Move into the TauREx3 folder:

cd TauREx3

Then, just do:

pip install .

To test for correct setup you can do:

python -c "import taurex; print(taurex.__version__)"

If no errors appeared then it was successfuly installed.
Additionally the taurex program should now be available
in the command line:

taurex

To build documentation do:

python setup.py build_sphinx

The output can be found in the doc/build directory

Dependencies

As TauREx3 is pure python ,there are no prerequisites.
Additionally these packages are also download and installed during setup:

	numpy [http://numpy.org/]

	numba [https://numba.pydata.org/]

	numexpr [https://github.com/pydata/numexpr]

	configobj [https://pypi.org/project/configobj/] for parsing input files

	nestle [https://github.com/kbarbary/nestle] for basic retrieval

	h5py [https://www.h5py.org/] for output

TauREx3 also includes ‘extras’ that can be enabled by
installing additional dependancies:

	Lightcurve modelling requires pylightcurve [https://pypi.org/project/pylightcurve/]

	Plotting using taurex-plot requires matplotlib [https://matplotlib.org/]

	Retrieval using Multinest [https://github.com/JohannesBuchner/MultiNest] requires pymultinest [https://github.com/JohannesBuchner/PyMultiNest]

	Retrieval using PolyChord [https://polychord.io/] requires pypolychord [https://pypi.org/project/pypolychord/]

	The dynamic version requires dypolychord [https://github.com/ejhigson/dyPolyChord/] as well

MPI

The message passing protocol (MPI) is not needed to install,
run and perform retrievals.

This is more of a help guide to getting mpi4py working
successfully and is not specific to TauREx3

There are some optimizers
that can make use of MPI to significantly speed up retrievals.
Specifically the Multinest and PolyChord optimizers. Considering
most people have difficulty with installing it, this guide
has been written to make the experience as smooth as possible.

First you must have an MPI library installed, this may already
be installed in your system (such as a cluster)
or you can install a library youself.
For Mac users the quickest way to install it is through Homebrew:

brew install openmpi

Now we need to install our python MPI wrapper library mpi4py [https://mpi4py.readthedocs.io/en/stable/index.html]:

pip install mpi4py

You can test the installation:

mpirun -n 4 python -m mpi4py.bench helloworld

Replace mpirun with whatever the equivalent is for your
system

You should get a similar output like so:

Hello, World! I am process 0 of 4 on blahblah.
Hello, World! I am process 1 of 4 on blahblah.
Hello, World! I am process 2 of 4 on blahblah.
Hello, World! I am process 3 of 4 on blahblah.

Then you are all set! Theres no need to reinstall TauREx3
as it will now import it successfully when run.

Tip

TauREx3 actually
suppresses text output from other processes so running under MPI
will actually look its being run serially. In fact if you
get multiple of the same outputs this is a surefire way to
know that something is wrong with the mpi4py installation!!!

However if you get something like this:

Hello, World! I am process 0 of 1 on blahblah.
Hello, World! I am process 0 of 1 on blahblah.
Hello, World! I am process 0 of 1 on blahblah.
Hello, World! I am process 0 of 1 on blahblah.

This means mpi4py has not correctly installed. This likely happens
in cluster environments with multiple MPI libraries. You can overcome
this by re-installing mpi4py with the MPICC enviroment set:

env MPICC=mpicc pip install --no-cache-dir mpi4py

Or:

env MPICC=/path/to/mpicc pip install --no-cache-dir mpi4py

Now re-run the test. If you get the correct result. Horray! If not,
its best to ask your administrator.

Once you have this installed, you can install pymultinest [https://johannesbuchner.github.io/PyMultiNest/install.html] here.

Supported Data Formats

Cross-sections

Supported formats are:

	.pickle TauREx2 pickle format

	.hdf5, .h5 New HDF5 format

	.dat, ExoTransmit [https://github.com/elizakempton/Exo_Transmit/tree/master/Opac] format

More formats can be included through Plugins

Tip

For opacities we recommend using hi-res cross-sections (R>7000)
from a high temperature linelist. Our recommendation are
linelists from the ExoMol [http://www.exomol.com] project.

K-Tables

New in version 3.1.

Supported formats are:

	.pickle TauREx2 pickle format

	.hdf5, .h5 petitRADTRANS HDF5 format

	.kta, NEMESIS format

More formats can be included through Plugins

Observation

For observations, the following formats supported
are:

	Text based 3/4-column data

	.pickle Outputs from Iraclis [https://github.com/ucl-exoplanets/Iraclis]

More formats can be included through Plugins

Collisionally Induced Absorption

Only a few formats are supported

	.db TauREx2 CIA pickle files

	.cia HITRAN [https://hitran.org/cia/] cia files

The taurex program

This section of the documentation deals with
using the main taurex program is accessed simply
by running in the command line:

taurex

a help can be accessed by doing:

taurex --help

	Quickstart
	Prerequisites

	Setup

	Forward Model

	Chemistry

	Contributions

	Storage

	Retrieval

	Input File Format
	Headers

	Variables

	Dynamic variables

	Mixins

	Custom Types
	Direct Method

	Extension Path Method

	Limitations

	Global Settings

	Chemistry
	ACE Equlibrium Chemistry
	Keywords

	Fitting Parameters

	Taurex Chemistry
	Keywords

	Fitting Parameters

	Gas Profiles

	Constant Profile
	Keywords

	Fitting Parameters

	Two Layer Profile
	Keywords

	Fitting Parameters

	Chemsitry File
	Keywords

	Temperature
	Isothermal Profile
	Keywords

	Fitting Parameters

	Examples

	Guillot 2010 Profile
	Keywords

	Fitting Parameters

	Examples

	N-Point Profile
	Keywords

	Fitting Parameters

	Rodgers 2000 Profile
	Keywords

	Fitting Parameters

	Temperature File
	Keywords

	Pressure
	Keywords

	Fitting Parameters
	Examples

	Planet
	Keywords

	Fitting Parameters
	Examples

	Star
	Blackbody
	Keywords

	Examples

	PHOENIX
	Keywords

	Examples

	Forward Models
	Contributions
	Examples

	Molecular Absorption

	Collisionally Induced Absorption
	Keywords

	Rayleigh Scattering

	Optically thick clouds
	Keywords

	Fitting Parameters

	Mie scattering (Lee)
	Keywords

	Fitting Parameters

	Mie scattering (BH)
	Keywords

	Fitting Parameters

	Mie scattering (Flat)
	Keywords

	Fitting Parameters

	Observation
	Keywords

	Example
	TauREx Spectrum

	Binning
	Manual binning

	Instrument
	SNR
	Keywords

	Fitting
	New-style priors

	Discovery

	Old-Style priors

	Deperecated Options table

	Derive

	Mixins
	makefree

	Optimizer

	Plotting

Quickstart

To get quickly up to speed lets try an example run using TauREx3. We will be using the examples/parfiles/quickstart.par
file as a starting point and examples/parfiles/quickstart.dat as our observation. Copy these to a new folder somewhere.

Prerequisites

Before reading this you should have a few things on hand. Firstly H2O and CO2 absorption cross sections
in one of the Supported Data Formats is required. This example assumes cross-sections at R=10000.
Secondly some collisionally induced absorption (CIA) cross sections are also
required for a later part for H2-He and H2-H2, you can get these from the HITRAN [https://hitran.org/cia/] site.

Tip

A starter set of these cross-sections and cia can be found in this dropbox: https://www.dropbox.com/sh/13y33d02vh56jh2/AABxuHdrZI83bSgoLz1Wzb2Fa?dl=0

Setup

In order to begin running forward models we need to tell TauREx3 where our cross-sections are.
We can do this by defining an xsec_path for cross sections and cia_path for CIA cross-sections under the
[Global] header in our quickstart.par files like so:

[Global]
xsec_path = /path/to/xsec
cia_path = /path/to/cia

Forward Model

Using our input we can run and plot the forward model by doing:

taurex -i quickstart.par --plot

And we should get:

[image: ../../_images/firstfm.png]
Our first forward model

Lets try plotting it against our observation. Under the [Observation] header
we can add in the observed_spectrum keyword and point it to our quickstart.dat file like so:

[Observation]
observed_spectrum = /path/to/quickstart.dat

Now the spectrum will be binned to our observation:

[image: ../../_images/fm_obs_bin.png]
Our binned observation

You may notice that general structure and peaks don’t seem to match up with observation.
Our model doesn’t seem to do the job and it may be the fault of our choice of molecule. Lets move on to chemistry.

Chemistry

As we’ve seen, CO2 doesn’t fit the observation very well, we should try adding in another molecule.
Underneath the [Chemistry] section we can add another sub-header with the name of our molecule, for this
example we will use a constant gas profile which keeps it abundance constant throughout the atmosphere,
there are other more complex profiles but for now we’ll keep it simple:

[Chemistry]
chemistry_type = taurex
fill_gases = H2,He
ratio=4.8962e-2

 [[H2O]]
 gas_type = constant
 mix_ratio=1.1185e-4

 [[CO2]]
 gas_type=constant
 mix_ratio=1.1185e-4

 [[N2]]
 gas_type = constant
 mix_ratio = 3.00739e-9

Plotting it gives:

[image: ../../_images/co2_and_h2o.png]
We’re getting there. It looks like H2O is definately there but maybe CO2 isn’t? Lets try it
by commenting it out:

[Chemistry]
chemistry_type = taurex
fill_gases = H2,He
ratio=4.8962e-2

 [[H2O]]
 gas_type = constant
 mix_ratio=1.1185e-4

 #[[CO2]]
 #gas_type=constant
 #mix_ratio=1.1185e-4

 [[N2]]
 gas_type = constant
 mix_ratio = 3.00739e-9

[image: ../../_images/h2o_only.png]
Much much better! We’re still missing something though…

Contributions

It seems moelcular absorption is not the only process happening in the atmosphere. Looking at the shorter
wavelengths we see the characteristic behaviour of Rayleigh scattering and a little from collisionally
induced absorption. We can easily add these contributions under the [Model] section of the input file.
Each contribution is represented as a subheader with additional arguments if necessary. By default we have
contributions from molecular [[Absorption]]
Lets add in some [[CIA]] from H2-H2 and H2-He and [[Rayleigh]] scattering to the model:

[Model]
model_type = transmission

 [[Absorption]]

 [[CIA]]
 cia_pairs = H2-He,H2-H2

 [[Rayleigh]]

[image: ../../_images/ray_and_cia.png]
Hey not bad!! It might be worth seeing how each of these processes effect the spectrum. Easy, we can run
taurex with the -c argument which plots the basic contributions:

taurex -i quickstart.par --plot -c

[image: ../../_images/contrib.png]
If you want a more detailed look of the each contribution you can use the -C option instead:

taurex -i quickstart.par --plot -C

[image: ../../_images/full_contrib.png]
Pretty cool. We’re almost there. Lets save what we have now to file.

Storage

Taurex3 uses the HDF5 [https://www.hdfgroup.org/solutions/hdf5/] format to store its state and results. We can accomplish this by
using the -o output argument:

taurex -i quickstart.par -o myfile.hdf5

We can use this output to plot profiles spectra and even the optical depth!
Try:

taurex-plot -i myfile.h5 -o fm_plots/ --all

To plot everything:

	
[image: ../../_images/fm_plots-0.png]
Chemistry

	
[image: ../../_images/fm_plots-1.png]
Spectrum

	
[image: ../../_images/fm_plots-2.png]
Contributions

	
[image: ../../_images/fm_plots-3.png]
Optical depth

HDF5 has many viewers such as HDFView [https://www.hdfgroup.org/downloads/hdfview/] or HDFCompass [https://support.hdfgroup.org/projects/compass/] and APIs such as Cpp [https://support.hdfgroup.org/HDF5/doc/cpplus_RM/index.html], FORTRAN [https://support.hdfgroup.org/HDF5/doc/fortran/index.html] and Python [https://www.h5py.org/].
Pick your poison.

Retrieval

So we’re close to the observation but not quite there and I suspect its the
temperature profile. We should try running a retrieval. We will use nestle [https://github.com/kbarbary/nestle] as our optimizer of choice
but other brands are available. This has already be setup under the [Optimizer] section of the input
file so we will not worry about it now. We now need to inform the optimizer what parameters we need to fit.
The [Fitting] section should list all of the parameters in our model that we want (or dont want) to fit
and how to go about fitting it. By default the planet_radius parameter is fit when no section is provided,
we should start by creating our [Fitting] section and disabling the planet_radius fit:

[Fitting]
planet_radius:fit = False

the syntax is pretty simple, its essentially parameter_name:option with option being either
fit, bounds and mode. fit is simply tells the optimizer whether to fit the parameter, bounds
describes the parameter space to optimize in and mode instructs the optimizer to fit in either linear
or log space.
The parameter we are interested in is isothermal temperature which is represented as T, and we will fit
it within 1200 K and 1400 K:

[Fitting]
planet_radius:fit = False
T:fit = True
T:bounds = 1200.0,1400.0

We don’t need to include mode as by default T fits in linear space. Some parameters such as
abundances fit in log space by default.

Running taurex like before will just plot our forward model. To run the retrieval we simply add
the --retrieval keyword like so:

taurex -i quickstart.par --plot -o myfile_retrieval.hdf5 --retrieval

We should now see something like this pop up:

taurex.Nestle - INFO - -------------------------------------
taurex.Nestle - INFO - ------Retrieval Parameters-----------
taurex.Nestle - INFO - -------------------------------------
taurex.Nestle - INFO -
taurex.Nestle - INFO - Dimensionality of fit: 1
taurex.Nestle - INFO -
taurex.Nestle - INFO -
Param Value Bound-min Bound-max
------- ------- ----------- -----------
T 1265.98 1200 1400

taurex.Nestle - INFO -
it= 393 logz=1872.153686niter: 394

It should only take a few minutes to run. Once done we should get an output like this:

---Solution 0------
taurex.Nestle - INFO -
Param MAP Median
------- ------- --------
T 1375.97 1371.71

So the temperature should have been around 1370 K, huh, and lets see how it looks. Lets plot the output:

taurex-plot -i myfile_retrieval.hdf5 -o retrieval_plots/ --all

Our final spectrum looks like:

[image: ../../_images/retrieval_plots-2.png]
Final result

We can then see the posteriors:

[image: ../../_images/retrieval_plots-1.png]
Posteriors

Thats the basics of playing around with TauREx 3. You can
try modifying the quickstart to do other things! Take a look at
Input File Format to see a list of parameters you can change!

Input File Format

Headers

The input file format is fairly simple to work with. The extension
for Taurex3 input files is .par however this is generally not enforced by the code.
The input is defined in various headers, with each header having variables that can be set:

[Header]
parameter1 = value
parameter2 = anothervalue

[Header2]
parameter1 = adifferentvalue

Of course comments are handled with #

	The available headers are:
	
	[Global]

	[Chemistry]

	[Temperature]

	[Pressure]

	[Planet]

	[Star]

	[Model]

	[Observation]

	[Binning]

	[Instrument]

	[Optimizer]

	[Fitting]

Not all of these headers are required in an input file. Some will generate
default profiles when not present. To perform retrievals,
[Observation], [Optimizer] and [Fitting] MUST
be present

Some of these may define additional subheaders given by the [[Name]] notation:

[Header]
parameter1 = value
 [[Subheader]]
 parameter2 = anothervalue

Variables

String variables take this form:

#This is valid
string_variable = Astringvariable
#This is also valid
string_variable_II = "A string variable"

Floats and ints are simply:

my_int_value = 10

And lists/arrays are defined using commas:

my_int_list = 10,20,30
my_float_list = 1.1,1.4,1.6,
my_string_list = hello,how,are,you

Dynamic variables

The input file is actually a dynamic format and its available variables can change depending
on the choice of certain profiles and types. For example lets take the [Temperature] header,
it contains the variable profile_type which describes which temperature profile to use.
Setting this to isothermal gives us the T variable which defines the isothermal temeprature:

[Temperature]
profile_type = isothermal
T = 1500.0

Now if we change the profile type to guillot2010 it will use the Guillot 2010 temperature profile
which gives access to the variables T_irr, kappa_irr, kappa_v1, kappa_v2 and alpha
instead:

[Temperature]
profile_type = guillot2010
T_irr=1500
kappa_irr=0.05
kappa_v1=0.05
kappa_v2=0.05
alpha=0.005

However setting T will throw an error as it doesn’t exist anymore:

[Temperature]
profile_type = guillot2010
#Error is thrown here
T=1500
kappa_irr=0.05

This also applies to fitting parameters, profiles provide certain fitting parameters
and changing the model means that these parameters may not exist anymore.

Mixins

New in version 3.1.

Mixins can be applied to any base component through the +
operator:

[Temperature]
profile_type = mixin1+mixin2+base

Where we apply mixin1 and mixin2 to a base.
Including mixins will also include their keywords as well. If mixin1
has the keyword param1, mixin2 has param2 and base has
another_param then we can define in the input file:

[Temperature]
profile_type = mixin1+mixin2+base
param1 = "Hello" # From mixin 1
param2 = "World" # From mixin 2
another_param = 10.0 # From base

Mixins are evaluated in reverse, the last must be a non-mixin
for example if we have a doubler mixin that doubles temperature profiles
then this is valid:

[Temperature]
profile_type = doubler+isothermal

but this is not valid:

[Temperature]
profile_type = isothermal+doubler

Additionally we cannot have more than one base class so this is invalid:

[Temeprature]
profile_type = doubler+isothermal+guillot

The reverse evaluation means that the first mixin will be applied last.
If we have another mixin called add50 which adds 50 K to the profile,
then:

[Temperature]
profile_type = doubler+add50+isothermal
T = 1000

Will result in a temperature profile of \(2100~K\). If we instead do this:

[Temperature]
profile_type = add50+doubler+isothermal
T = 1000

Then the resultant temperature will be \(2050~K\).

Custom Types

Direct Method

Across many of the atmospheric parameters/sections you’ll
come across the custom type. These allow you to inject your
own code to be used in the forward model and retrieval scheme.

Developing or wrapping your own parameters is discussed in the
Developers guide.

Lets take a simple example. Imagine you have your own amazing
temperature profile and you’ve written a TauREx 3 class for it:

from taurex.temperature import TemperatureProfile
from taurex.core import fitparam
import numpy as np

class RandomTemperature(TemperatureProfile):

 def __init__(self, base_temp=1500.0,
 random_scale=10.0):
 super().__init__(self.__class__.__name__)

 self._base_temp = base_temp
 self._random_scale = random_scale

 # -----Fitting Parameters--------------

 @fitparam(param_name='rand_scale',param_latex='rand')
 def randomScale(self):
 return self._random_scale

 @randomScale.setter
 def randomScale(self, value):
 self._random_scale = value

 @fitparam(param_name='base_T',param_latex='T_{base}')
 def baseTemperature(self):
 return self._base_temp

 @baseTemperature.setter
 def baseTemperature(self, value):
 self._base_temp = value

 # -------Actual calculation -----------

 @property
 def profile(self):
 return self._base_temp + \
 np.random.rand(self.nlayers) * self._random_scale

Ok ok this is a terrible temperature profile, essentially it is randomizing
around a base temperature given but I digress. We can easily include it in taurex
by pointing it to the file:

[Temperature]
profile_type = custom
python_file = /path/to/rand_temperature.py

Thats it!! When you change a type (i.e profile_type, model_type etc.) to custom
the new keyword python_file is available which should point to the python file with the class
you want. We can run TauREx3 with it and see that it has indeed accepted it:

taurex -i input.par -o randtemp_test.h5
taurex-plot -i randtemp_test.h5 -o myplots/ --plot-tpprofile

Which gives:

[image: ../../_images/random_tp.png]
Truly terrible

Now we can do a little more with this as well. When TauREx3 is given
a new class it will scan for initialization keywords and embed them as new input keywords.
Looking at the class, the initialization keywords are base_temp and random_scale
this means we can put them as parameters in the input file:

[Temperature]
profile_type = custom
python_file = /path/to/rand_temperature.py
base_temp = 500.0
random_scale = 100.0

And plotting again we see that the profile has now changed to reflect this:

[image: ../../_images/random_tp_5001.png]
Truly terrible at 500.0 K

Finally, it is entriely possible to perform retrievals with our new profile,
since TauREx3 will also discover new fitting parameters. Our profile
has the fitting parameters base_T and rand_scale so we can add them to our
[Fitting] section:

[Fitting]
planet_radius:fit = True
planet_radius:bounds = 0.8, 2.0

base_T:fit = True
base_T:bounds = 500.0, 3000.0
rand_scale:mode = log
rand_scale:fit = True
rand_scale:bounds = 1e-10, 1000.0

Of course we get all the benefits of native fitting parameters like the ability
to switch between linear and log scale. Now we can perform a retrieval
and plot posteriors like so:

taurex -i input.par -o randtemp_retrieval.h5 --retrieval
taurex-plot -i randtemp_retrieval.h5 -o myplots_retrieval/ --plot-posteriors

[image: ../../_images/random_tp_posterior.png]
Truly terrible posteriors

Which correctly adds in the latex parameters as well, it even inserted log for us!
Of course the retrieval just went ahead and tried to minimize the randomness which makes sense!
Almost all parameters have some custom functionality. The ones that do not have this
are [Binning] and [Global].
Try it out!

Here is the full input.par file:

[Global]
xsec_path = /path/to/xsecfiles
cia_path = /path/to/ciafiles

----Forward Model related -----------

[Chemistry]
chemistry_type = taurex
fill_gases = H2,He
ratio = 4.8962e-2

 [[H2O]]
 gas_type = constant
 mix_ratio=1.1185e-4

 [[N2]]
 gas_type = constant
 mix_ratio = 3.00739e-9

[Temperature]
profile_type = custom
python_file = rand_temperature.py
base_temp = 1000.0
random_scale = 100.0

[Pressure]
profile_type = Simple
atm_min_pressure = 1e-4
atm_max_pressure = 1e6
Use 10 layers to keep retrieval time down
nlayers = 10

[Planet]
planet_type = Simple
planet_mass = 1.0
planet_radius = 1.0

[Star]
star_type = blackbody

[Model]
model_type = transmission

 [[Absorption]]

 [[CIA]]
 cia_pairs = H2-He,H2-H2

 [[Rayleigh]]

---------Creating an observation for retrieval--------
We use instruments to create an observation
Rather than passing in a text file

[Binning]
bin_type = manual
accurate = False
wavelength_res = 0.6,4.1,100 # Start end

[Instrument]
instrument = snr
SNR = 20

[Observation]
taurex_spectrum = self

------Retrieval related --------------

[Optimizer]
optimizer = nestle
Use small number of live points to minimize
retrieval time
num_live_points = 50

[Fitting]
planet_radius:fit = True
planet_radius:factor = 0.8, 2.0

base_T:fit = True
base_T:bounds = 500.0, 3000.0
rand_scale:mode = log
rand_scale:fit = True
rand_scale:bounds = 1e-10, 1000.0

Extension Path Method

Another way to include your own code is by setting the extension_path
variable under [Global]. If our python file exists in a folder say:

mycodes/
 rand_temperature.py

We can set the path to extension_path variable to point to the folder:

[Global]
extension_path = /path/to/mycodes/

We will need to make one small modification and add the input_keywords class method
to our temperature profile. (See Basics):

@classmethod
def input_keywords(cls):
 return ['my-random-temperature',]

TauREx will now search for .py files in the directory, attempt to load them and then automatically
integrate them into the TauREx pipeline!!! We can use the value return by input_keywords to select our
profile:

[Temperature]
profile_type = my-random-temperature
base_temp = 1000.0
random_scale = 100.0

Cool!!!

Limitations

The custom system is intended for quick development and inclusion of new components or file formats. There are
as few limitations when using it.

First each file is loaded in isolation, therefore referencing another python file in the same directory will yield errors,
for example if we have this directory:

mycodes/
 rand_temperature.py
 util.py

And we attempt to import util in rand_temperature.py then it will fail.

The Direct Method does not support loading in Opacity and
Contribution types.

If you feel like you need more control and flexibility with your extensions or if it is useful to the community as a whole
then we suggest trying Plugin Development

[Global]

The global section generally handles settings that affect the whole program.

	
	xsec_path
	
	str or list of str

	Defines the path(s) that contain molecular cross-sections

	e.g xsec_path = path/to/xsec

	
	xsec_interpolation
	
	exp or linear

	Defines whether to use exponential or linear interpolation for temperature

	e.g xsec_interpolation = exp

	
	in_memory
	
	True or False

	For HDF5 opacities. Determines if streamed from file (False) or loaded into memory (True)

	Default is True

	e.g in_memory = true

	
	cia_path
	
	str or list of str

	Defines the path(s) that contain CIA cross-sections

	e.g cia_path = path/to/xsec

	
	ktable_path
	
	str or list of str

	Defines the path(s) that contain k-tables

	e.g ktable_path = path/to/ktables

	
	opacity_method
	
	Either xsec or ktables

	Choose whether to use molecular cross-sections or correlated k method.

	e.g opacity_method = ktables

	
	mpi_use_shared
	
	True or False

	Exploit MPI 3.0 shared memory to significantly reduce memory usage per node

	When running under MPI, will only allocate arrays once in a node rather than each process

	Works on allocations that use this feature (i.e pickle and HDF5 opacities)

	e.g mpi_use_shared = True

[Chemistry]

This header describes the chemical composition of the
atmosphere. The type of model used is defined by the
chemistry_type variable.

	The available chemistry_type are:
	
	
	ace
	
	ACE equlibrium chemistry

	Class: ACEChemistry

	
	taurex
	
	Free chemistry

	Class: TaurexChemistry

	
	custom
	
	User-type chemistry. See Custom Types

ACE Equlibrium Chemistry

Warning

Since version 3.1 this has been removed from the base TauREx package. You can
restore this chemical scheme by writing:

pip install taurex_ace

chemistry_type = ace
chemistry_type = equilibrium

Equilibrium chemistry using the ACE FORTRAN program. Fortran compiler required

Keywords

	Variable

	Type

	Description

	Default Value

	metallicity

	float

	Stellar metallicity in solar units

	1.0

	co_ratio

	float

	C/O ratio

	0.54951

Fitting Parameters

	Parameter

	Type

	Description

	ace_metallicity

	float

	Stellar metallicity in solar units

	ace_co

	float

	C/O ratio

Taurex Chemistry

chemistry_type = taurex
chemistry_type = free

This chemistry type allows you to define individual
abundance profiles for each molecule. Molecules are either active or inactive depending on
whats available. If no cross-sections are available then the moelcule is not actively absorbing.

Keywords

	Variable

	Type

	Description

	Default

	fill_gases

	str or list

	Gas or gases to fill the
atmosphere with

	H2,He,

	ratio

	float or list

	Ratio between first fill
gas and every other fill
gas

	0.749

Fitting Parameters

On its own, this chemistry model provides fitting parameters relating to the fill gases used.
These are only created when more than one fill gas is defined.
Here, we use [Gas-0] to designate the first gas defined in the fill gas list and
[Gas-(number)] to designate the nth gas after the main gas. If we have a
gas list like:

fill_gases = H2,He,CO2,

then [Gas-1]_[Gas-0] == He_H2 and [Gas-2]_[Gas-0] == CO2_H2:

	Parameter

	Type

	Description

	[Gas-(n)]_[Gas-0]

	float

	Ratio of nth fill gas
vs first fill gas

However molecules are defined as subheaders with the subheader being the name of the molecule.
Each molecule can be assigned an abundance profile through the gas_type variable.
For example, to describe a chemical profile with water in constant abundance in the atmosphere
is simply done like so:

[Chemistry]
chemistry_type = taurex
fill_gases = H2,He,
ratio = 0.1524

 [[H2O]]
 gas_type = constant
 mix_ratio = 1e-4

	For each molecule, the available gas_type are:
	
	
	constant
	
	Constant abundance profile

	Class: ConstantGas

	
	twopoint
	
	Two Point abundance profile

	Class: TwoPointGas

	
	twolayer
	
	Two layer abundance profile

	Class: TwoLayerGas

Gas Profiles

For these profiles, the fitting parameters generated have
the name associated with the name of the molecule. For example:
H2O_P, CH4_S etc. Because of this, we will use the moniker:
[Mol]. Replacing this with the appropriate molecule will give you
the correct fitting parameter name.
e.g. [Mol]_surface should be H2O_surface for water etc.

Constant Profile

gas_type = constant

An abundance profile that is constant with height of the atmosphere

[image: ../../_images/constantgas.png]

Keywords

	Variable

	Type

	Description

	Default

	mix_ratio

	float

	Mixing ratio of molecule

	1e-4

Fitting Parameters

	Parameter

	Type

	Description

	[Mol]

	float

	Mixing ratio of molecule

Two Layer Profile

gas_type = twolayer

An abundance profile where abundance is defined on the planet surface and top of
the atmosphere with a pressure point determining the boundary between the layers.
Smoothing is applied.

[image: ../../_images/twolayerabundance.png]

Keywords

	Variable

	Type

	Description

	Default

	mix_ratio_surface

	float

	Mixing ratio at BOA

	1e-4

	mix_ratio_top

	float

	Mixing ratio at TOA

	1e-8

	mix_ratio_P

	float

	Pressure boundary (Pa)

	1e3

	mix_ratio_smoothing

	int

	Smoothing window

	10

Fitting Parameters

	Parameter

	Type

	Description

	[Mol]_surface

	float

	Mixing ratio at BOA

	[Mol]_top

	float

	Mixing ratio at TOA

	[Mol]_P

	float

	Pressure boundary (Pa)

Chemsitry File

chemistry_type = file

Reads a multi-column text file. Order must be
from BOA to TOA. Each column must represent a unique
molecule.

Keywords

	Variable

	Type

	Description

	Default

	filename

	str

	Path to chemistry file

	None

	gases

	list

	List of all molecules in
column order

	None

[Temperature]

This header is used to define temperature profiles for the atmosphere.
The type of temperature profile is defined by the profile_type variable

	The available profile_type are:
	
	
	isothermal
	
	Isothermal temperature profile

	Class: Isothermal

	
	guillot2010
	
	TP profile from Guillot 2010, A&A, 520, A27

	Class: Guillot2010

	
	npoint
	
	N-point temperature profile

	Class: NPoint

	
	rodgers
	
	Layer-by-layer temperature - pressure profile

	Class: Rodgers2000

	
	file
	
	Temperature profile from file

	Class: TemperatureFile

	
	custom
	
	User-type temperature. See Custom Types

More profiles can also be included using Plugins

Isothermal Profile

profile_type = isothermal

Constant temperature throughout atmosphere

[image: ../../_images/isothermal.png]

Keywords

	Variable

	Type

	Description

	Default

	T

	float

	Temperature in Kelvin

	1500

Fitting Parameters

	Parameter

	Type

	Description

	T

	float

	Temperature in Kelvin

Examples

Example isothermal profile:

[Temperature]
profile_type = isothermal
T = 1500

Guillot 2010 Profile

profile_type = guillot

TP profile from Guillot 2010, A&A, 520, A27 (equation 49)
Using modified 2stream approx. from Line et al. 2012, ApJ, 749,93 (equation 19)

[image: ../../_images/guillot.png]

Keywords

	Variable

	Type

	Description

	Default

	T_irr

	float

	Planet equilibrium temperature (K)

	1500

	kappa_ir

	float

	mean infra-red opacity

	0.01

	kappa_v1

	float

	mean optical opacity one

	0.005

	kappa_v2

	float

	mean optical opacity two

	0.005

	alpha

	float

	ratio between kappa_v1 and kappa_v2

	0.5

Fitting Parameters

	Parameter

	Type

	Description

	T_irr

	float

	Planet equilibrium temperature (K)

	kappa_ir

	float

	mean infra-red opacity

	kappa_v1

	float

	mean optical opacity one

	kappa_v2

	float

	mean optical opacity two

	alpha

	float

	ratio between kappa_v1 and kappa_v2

Examples

Example Guillot profile:

[Temperature]
profile_type = guillot
T_irr = 1500
kappa_ir = 0.01
kappa_v1 = 0.002
kappa_v2 = 0.003
alpha = 0.3

N-Point Profile

profile_type = npoint

Temperature defined at various heights in the atmosphere. Smoothing is then applied.
If no temperature and pressure points are defined, it is equivalent to a 2-point
profile. Including 1 makes it a 3-point and so on.
Each temperature point must have an associated pressure point and vica versa.

[image: ../../_images/npoint.png]

Keywords

	Variable

	Type

	Description

	Default

	T_surface

	float

	Temperature at P_surface in K

	1500

	T_top

	float

	Temperature at P_top in K

	200

	P_surface

	float

	Pressure at T_surface in Pa. Set to -1 for BOA

	-1

	P_top

	float

	Pressure at T_top in Pa. Set to -1 for TOA

	-1

	temperature_points

	list

	Temperature points between BOA and TOA

	

	pressure_points

	list

	Pressure in Pa for each temperature point

	

	smoothing_window

	int

	Smoothing width

	10

Fitting Parameters

Fitting parameters are generated for each temperature_point
and pressure_point defined. They start from 1 and have the form
T_point1, P_point1, T_point2, P_point2 etc.

	Variable

	Type

	Description

	T_surface

	float

	Temperature at P_surface in K

	T_top

	float

	Temperature at P_top in K

	P_surface

	float

	Pressure at T_surface in Pa.

	P_top

	float

	Pressure at T_top in Pa.

	T_point(n)

	float

	Temperature point (n). Starts from 1

	P_point(n)

	float

	Pressure point (n). Starts from 1

Rodgers 2000 Profile

profile_type = rodgers

Layer-by-layer temperature - pressure profile retrieval using dampening factor
Introduced in Rodgers (2000): Inverse Methods for Atmospheric Sounding (equation 3.26)

[image: ../../_images/rodgers.png]

Keywords

	Variable

	Type

	Description

	Default

	temperature_layers

	list

	Temperature in Kelvin for each layer

	None

	correlation_length

	float

	Correlation length

	5.0

Fitting Parameters

Warning

For a 100 layer atmosphere, this will create 100
fitting parameters for T_(n) which might be
very unwieldly to use and fitting them all could lead
to a very long sample time.

	Parameter

	Type

	Description

	T_(n)

	float

	Temperature for layer (n)

	corr_length

	float

	Correlation length

Temperature File

profile_type = file

Reads a text file. Can support multi column files with any units

If a pressure column is provided then it will interpolate the temperature
based on the pressure. If no pressure is provided then it will assume index
0 is BOA and the last index is TOA and interpolate according to that.

Keywords

	Variable

	Type

	Description

	Default

	filename

	str

	Path to temperature file

	None

	skiprows

	int

	No. of rows to ignore

	0

	temp_col

	int

	Column number of temperature (0-based)

	0

	press_col

	int

	Column number of pressure if available (0-based)

	None

	temp_units

	str

	Units of temperature (based on astropy format)

	K

	press_units

	str

	Units of pressure (based on astropy format)

	Pa

	delimiter

	str

	Delimiter used in file. None means whitespace

	None

	reverse

	bool

	False = BOA-TOA, True = TOA-BOA

	None

[Pressure]

The header describes pressure profiles for the atmosphere.
Currently only one type of profile is supported, so profile_type=simple or profile_type=hydrostatic must be included.
profile_type = custom is also valid, See Custom Types

	Class

	SimplePressureProfile

Keywords

	Variable

	Type

	Description

	Default

	atm_min_pressure

	float

	Pressure in Pa at TOA

	1e0

	atm_max_pressure

	float

	Pressure in Pa at BOA

	1e6

	nlayers

	int

	Number of layers

	100

Fitting Parameters

Warning

Whilst included of completeness it is generally not a good idea
to fit these parameters as it can drastically alter the scale of
the atmosphere.

	Variable

	Type

	Description

	atm_min_pressure

	float

	Pressure in Pa at TOA

	atm_max_pressure

	float

	Pressure in Pa at BOA

	nlayers

	int

	Number of layers

Examples

A basic pressure profile:

[Pressure]
profile_type = simple
atm_min_pressure = 1e-3
atm_max_pressure = 1e6
nlayers = 100

[Planet]

This header is used to define planetary properties. Currently, only planet_type = simple
is supported and must be included. planet_type = custom is also valid, See Custom Types

	Class

	Planet

Keywords

	Variable

	Type

	Description

	Default

	planet_mass

	float

	Mass in Jupiter mass

	1.0

	planet_radius

	float

	Radius in Jupiter radius

	1.0

	planet_distance

	float

	Semi-major-axis in AU

	1.0

	impact_param

	float

	Impact parameter

	0.5

	orbital_period

	float

	Orbital period in days

	2.0

	albedo

	float

	Planetary albedo

	0.3

	transit_time

	float

	Transit time in seconds

	3000.0

Fitting Parameters

	Parameter

	Type

	Description

	planet_mass

	float

	Mass in Jupiter mass

	planet_radius

	float

	Radius in Jupiter radius

	planet_distance

	float

	Semi-major-axis in AU

Examples

Planet with 1.5 Jupiter mass and 1.2 Jupiter radii:

[Planet]
planet_type = simple
planet_mass = 1.5
planet_radius = 1.2

[Star]

This header describes the parent star of the exo-planet.
The star_type informs the type of spectral emission density (SED) used in the emission and direct image forward model.
The star_type available are:

	
	blackbody
	
	Star with a blackbody SED

	Class BlackbodyStar

	
	phoenix
	
	Uses the PHOENIX [https://arxiv.org/abs/1303.5632] library for the SED

	PhoenixStar

	
	custom
	
	User-provided star model. See Custom Types

Blackbody

star_type = blackbody

Star is considered a blackbody.

Keywords

	Variable

	Type

	Description

	Default

	temperature

	float

	Effective temperature in K

	5000

	radius

	float

	Radius in solar radius

	1.0

	mass

	float

	Mass in solar mass

	1.0

	distance

	float

	Distance from Earth in pc

	1.0

	metallicity

	float

	Metallicity in solar units

	1.0

	magnitudeK

	float

	Magnitude in K-band

	10.0

Examples

A Sun like star as a black body:

[Star]
star_type = blackbody
radius = 1.0
temperature = 5800

PHOENIX

star_type = phoenix

Stellar emission spectrum is read from the PHOENIX [https://arxiv.org/abs/1303.5632] library .fits.gz files and interpolated to the correct temperature.
Any temperature outside of the range provided by PHOENIX will use a blackbody SED instead.
The .fits.gz filenames must include the temperature as the first number. TauREx3 splits the filename
in terms of numbers so any text can be included in the beginning of the file name, therefore these are valid:

lte05600.fits.gz # 5600 Kelvin
abunchofothertext-andanother-here05660-0.4_0.5.0.8.fits.gz #5660 Kelvin
5700-056-034-0434.fits.gz #5700 Kelvin

Keywords

	Variable

	Type

	Description

	Default

	phoenix_path

	str

	Path to .fits.gz files

	Required

	temperature

	float

	Effective temperature in K

	5000

	radius

	float

	Radius in solar radius

	1.0

	mass

	float

	Mass in solar mass

	1.0

	distance

	float

	Distance from Earth in pc

	1.0

	metallicity

	float

	Metallicity in solar units

	1.0

	magnitudeK

	float

	Magnitude in K-band

	10.0

Examples

A Sun like star using PHOENIX spectra:

[Star]
star_type = phoenix
radius = 1.0
temperature = 5800
phoenix_path = /mypath/to/fitsfiles/

[Model]

This header defines the type of forward model (FM) that will be computed by TauREx3.
There are only four distinct forward model_type:

	
	transmission
	
	Transmission forward model

	
	emission
	
	Emission forward model

	
	directimage
	
	Direct-image forward model

	
	custom
	
	User-type forward model, See Custom Types

Both emission and direct image also include an optional keyword ngauss which
dictates the number of Gaussian quadrate points used in the integration. By default
this is set to ngauss=4.

Contributions

Contributions define what processes in the atmosphere contribute to the optical depth.
These contributions are defined as subheaders with the name of the header being the contribution
to add into the forward model.Any forward model type can be augmented with these contributions.

Examples

Transmission spectrum with molecular absorption and CIA from H2-He and H2-H2:

[Model]
model_type = transmission
 [[Absorption]]

 [[CIA]]
 cia_pairs = H2-He,He-He

Emission spectrum with molecular absorption, CIA and Rayleigh scattering:

[Model]
model_type = emission
ngauss = 4
 [[Absorption]]

 [[CIA]]
 cia_pairs = H2-He,He-He

 [[Rayleigh]]

The following sections give a list of available contributions

Molecular Absorption

[[Absorption]]

Adds molecular absorption to the forward model. Here the active
molecules contribute to absorption.
No other keywords are needed. No fitting parameters.

Collisionally Induced Absorption

[[CIA]]

Adds collisionally induced absorption to the forward model.
Requires cia_path to be set. Both active and inactive
molecules can contribute.
No fitting parameters

Keywords

	Variable

	Type

	Description

	cia_pairs

	list

	List of molecular pairs. e.g. H2-He, H2-H2

Rayleigh Scattering

[[Rayleigh]]

Adds Rayleigh scattering to the forward model. Both active and inactive
molecules can contribute. No keywords or fitting parameters.

Optically thick clouds

[[SimpleClouds]] or [[ThickClouds]]

A simple cloud model that puts a infinitely absorping cloud deck
in the atmosphere.

Keywords

	Variable

	Type

	Description

	clouds_pressure

	float

	Pressure of top of cloud-deck in Pa

Fitting Parameters

	Variable

	Type

	Description

	clouds_pressure

	float

	Pressure of top of cloud-deck in Pa

Mie scattering (Lee)

[[LeeMie]]

Computes Mie scattering contribution to optical depth
Formalism taken from: Lee et al. 2013, ApJ, 778, 97

Keywords

	Variable

	Type

	Description

	lee_mie_radius

	float

	Particle radius in um

	lee_mie_q

	float

	Extinction coefficient

	lee_mie_mix_ratio

	float

	Mixing ratio in atmosphere

	lee_mie_bottomP

	float

	Bottom of cloud deck in Pa

	lee_mie_topP

	float

	Top of cloud deck in Pa

Fitting Parameters

	Parameter

	Type

	Description

	lee_mie_radius

	float

	Particle radius in um

	lee_mie_q

	float

	Extinction coefficient

	lee_mie_mix_ratio

	float

	Mixing ratio in atmosphere

	lee_mie_bottomP

	float

	Bottom of cloud deck in Pa

	lee_mie_topP

	float

	Top of cloud deck in Pa

Mie scattering (BH)

[[BHMie]]

Computes a Mie scattering contribution using method given by
Bohren & Huffman 2007

Keywords

	Variable

	Type

	Description

	bh_particle_radius

	float

	Particle radius in um

	bh_cloud_mix

	float

	Mixing ratio in atmosphere

	bh_clouds_bottomP

	float

	Bottom of cloud deck in Pa

	bh_clouds_topP

	float

	Top of cloud deck in Pa

	mie_path

	str

	Path to molecule scattering parameters

	mie_type

	cloud or haze

	Type of mie cloud

Fitting Parameters

	Parameter

	Type

	Description

	bh_particle_radius

	float

	Particle radius in um

	bh_cloud_mix

	float

	Mixing ratio in atmosphere

	bh_clouds_bottomP

	float

	Bottom of cloud deck in Pa

	bh_clouds_topP

	float

	Top of cloud deck in Pa

Mie scattering (Flat)

[[FlatMie]]

Computes a flat absorbing region of the atmosphere
across all wavelengths

Keywords

	Variable

	Type

	Description

	flat_mix_ratio

	float

	Opacity value

	flat_bottomP

	float

	Bottom of absorbing region in Pa

	flat_topP

	float

	Top of absorbing region in Pa

Fitting Parameters

	Parameter

	Type

	Description

	flat_mix_ratio

	float

	Opacity value

	flat_bottomP

	float

	Bottom of absorbing region in Pa

	flat_topP

	float

	Top of absorbing region in Pa

[Observation]

This header deals with loading in spectral data
for retrievals or plotting.

Keywords

Only one of these is required. All accept a string path to a file

	Variable

	Data format

	observed_spectrum

	ASCII 3/4-column data with format: Wavelength, depth, error, widths

	observed_lightcurve

	Lightcurve pickle data

	iraclis_spectrum

	Iraclis output pickle data

	taurex_spectrum

	TauREX HDF5 output or self See taurexspectrum

Example

An example of loading an ascii data-set:

[Observation]
observed_spectrum = /path/to/data.dat

TauREx Spectrum

The taurex_spectrum has two different modes. The first mode is specifing a filename path of a
a TauREx3 HDF5 output. This output must have been run with some form of instrument function (see [Instrument]),
for it to be useable as an observation.
Another is to set taurex_spectrum = self, this will set the current forward model + instrument function
as the observation. This type observation is valid of the fitting procedure making it possible to do self-retrievals.

[Binning]

This section deals with the resampling of the forward model.

Binning allows you to change how the forward is sampled. When
only running in forward model mode, it affects the final binned spectrum
stored in the output and the plotting.
It has no effect on retrievals.

The type of binning defined is given by the bin_type variable:

	The available bin_type are:
	
	
	native
	
	Spectra is not resampled

	Default when no [Observation] is given

	
	observed
	
	Resample to observation grid

	Default when [Observation] is given

	
	manual
	
	Manually defined resample grid

Manual binning

bin_type = manual

When set to manual, you can then define the start, end and number of points
of the grid using one of these keywords:

	Variable

	Description

	wavelength_grid

	Equally spaced grid in wavelength (um)

	wavenumber_grid

	Equally spaced grid in wavenumber (cm-1)

	log_wavelength_grid

	Equally log-spaced grid in wavelength (um)

	log_wavenumber_grid

	Equally log-spaced grid in wavenumber (cm-1)

An example, to define an equally spaced wavelength grid at 0.3-5 um:

[Binning]
bin_type = manual
wavelength_grid = 0.3, 5, 300

Or define an equally log spaced wavenumber grid between 400-5000 cm-1:

[Binning]
bin_type = manual
log_wavenumber_grid = 400, 5000, 300

Alternativly you can instead define it based on the resolution
with the format as start, end, resolution

	Variable

	Description

	wavelength_res

	Wavelength grid at resolution (um)

We can define a grid with 1.1-1.7 um at R=50 resolution:

[Binning]
bin_type = manual
wavelength_res = 1.1, 1.7, 50

Finally there is an optional parameter accurate. When False,
a simpler histogramming method is used to perform the resampling.
When set to True a more accurate method is used that takes into
account the occupancy of each native sample on the sampling grid.

[Instrument]

This section deals with passing the forward model through
some form of noise model.

The instrument function in TauREx3 serves to generate
a spectrum and noise from a forward model.

Including a noise model in the TauREx3 input makes the output file capable
of being used as an observation in the retrieval. It is also capable
of fitting itself (See TauREx Spectrum)

	The instrument is defined by the instrument variable:
	
	
	snr
	
	Signal-to-noise ratio instrument

	Class: SNR

	
	custom
	
	User-type instrument. See Custom Types

SNR

instrument = snr
A very basic instrument that generates noise based on the forward model
spectrum and signal-to-noise ratio value. Uses the native spectrum as the grid,
unless a Manual binning is defined in which case that is used as the grid.

Keywords

	Variable

	Type

	Description

	SNR

	float

	Signal-to-noise ratio

	num_observation

	int

	Number of observations

[Fitting]

This header deals with controlling the fitting procedure.

The format for altering and controlling fitting parameters is of the form:

fit_param:option = value

Here fit_param is the name of the fitting parameter as is given
under the Fitting Parameters headers in the user documentation. This also
includes any custom fitting parameters provided by a users custom class (See: Custom Types)
Only parameters that exist within the forward model can be set/altered. Trying to set
any other parameter will yield an error.

option defines a set of control key words that alter what the fitting parameter does.
For example, we can enable fitting of the planet radius using the fit option:

[Fitting]
planet_radius:fit = True

New-style priors

New in version 3.1.

The prior option allows you define a
prior function for a particular fitting parameter. This replaces the older
method by allowing for more control over what type of function to use.
They are expandable with new ones implemented through plugins or custom code.

Its syntax is very no similar to creating an object in python, for
example to define a uniform prior of bounds 0.8–5.0 Jupiter masses
we can do:

[Fitting]
planet_radius:fit = True
planet_radius:prior = "Uniform(bounds=(0.8, 5.0))"

It is important that the prior definition is surrounded by quotation
marks. The prior definitions can contain multiple and distinct arguments,
and have seperate Log forms as well with arguments in log-space:

[Fitting]
H2O:fit = True
H2O:prior = "LogUniform(bounds=(-12, -2))"

Often these log-forms have extra linear (lin) arguments where
they are defined in linear space instead, for example, the
prior space:

[Fitting]
H2O:fit = True
H2O:prior = "LogUniform(lin_bounds=(1e-12, 1e-2))"

is equivalent to the previous example.
The second included prior is the Gaussian prior which
has mean and standard deviation arguments:

planet_radius:prior = "Gaussian(mean=1.0,std=0.3)"

as well as log versions:

H2O:prior = "LogGaussian(mean=-4,std=2)"

The mean can be defined in linear space with the lin_mean
argument:

H2O:prior = "LogGaussian(lin_mean=1e-4,std=2)"

Discovery

Refer to the documentation or plugin documentation to find out what fitting parameters
are available. You can pass your input file with the --fitparam option to list
available parameters:

> taurex -i myinput.par --fitparam

With the fitting paramaters listed under Available Retrieval Parameters:

------Available Retrieval Parameters-----------

╒══════════════════╤══╕
│ Param Name │ Short Desc │
╞══════════════════╪══╡
│ planet_mass │ Planet mass in Jupiter mass │
├──────────────────┼──┤
│ planet_radius │ Planet radius in Jupiter radii │
├──────────────────┼──┤
│ planet_distance │ Planet semi major axis from parent star (AU) │
├──────────────────┼──┤
│ planet_sma │ Planet semi major axis from parent star (AU) (ALIAS) │
├──────────────────┼──┤
│ atm_min_pressure │ Minimum pressure of atmosphere (top layer) in Pascal │
├──────────────────┼──┤
│ atm_max_pressure │ Maximum pressure of atmosphere (surface) in Pascal │
├──────────────────┼──┤
│ T │ Isothermal temperature in Kelvin │
├──────────────────┼──┤
│ H2O │ H2O constant mix ratio (VMR) │
├──────────────────┼──┤
│ CH4 │ CH4 constant mix ratio (VMR) │
├──────────────────┼──┤
│ He_H2 │ He/H2 ratio (volume) │
├──────────────────┼──┤
│ clouds_pressure │ Cloud top pressure in Pascal │
╘══════════════════╧══╛

------Available Computable Parameters----------

╒══════════════╤══╕
│ Param Name │ Short Desc │
╞══════════════╪══╡
│ logg │ Surface gravity (m2/s) in log10 │
├──────────────┼──┤
│ avg_T │ Average temperature across all layers │
├──────────────┼──┤
│ mu │ Mean molecular weight at surface (amu) │
├──────────────┼──┤
│ C_O_ratio │ C/O ratio (volume) │
├──────────────┼──┤
│ He_H_ratio │ He/H ratio (volume) │
╘══════════════╧══╛

Old-Style priors

Warning

It is recommended that the new style priors are used.
These are only included for compatability and will be removed in
the next major version of TauREx

We can set the prior boundaries between 1.0 - 5.0 Jupiter masses
using the bounds option:

[Fitting]
planet_radius:fit = True
planet_radius:bounds = 1.0, 5.0

And fit it in log space using the mode option:

[Fitting]
planet_radius:fit = True
planet_radius:bounds = 1.0, 5.0
planet_radius:mode = log

Caution

bounds must be given in linear space. Even if fitting
in log space. TauREx3 will automatically convert these bounds to
the correct fitting space.

If we have a constant H2O chemistry in the atmosphere we can
fit it in linear space instead of the default log:

[Fitting]
planet_radius:fit = True
planet_radius:bounds = 1.0, 5.0
planet_radius:mode = log
H2O:fit = True
H2O:mode = linear
H2O:bounds = 1e-12, 1e-1

Deperecated Options table

A summary all valid option is given here:

	Option

	Description

	Values

	fit

	Enable or disable fitting

	True or False

	bounds

	Prior boundaries in linear space

	min, max

	factor

	Scaled boundaries in linear space

	sclmin, sclmax

	mode

	Fitting space

	log or linear

[Derive]

New in version 3.1.

This section deals with post-processed values from a retrieval.

The format for enabling post-processed values are:

derived_param:compute = value

Only compute is available as an option. Setting to True will
ask TauREx to generate posteriors at the end of a retrieval
for the parameter using the sample points.

By default, the chemistry mean molecular mass (\(\mu\)) at the surface is computed.
We can disable this and instead compute the \(log(g)\) of the planet surface
and average temperature like so:

[Derive]
mu:compute = False
logg:compute = True
avg_T:compute = True

Refer to the documentation or plugin documentation to find out what derived parameters
are available. You can pass your input file with the --fitparam option to list
available parameters:

> taurex -i myinput.par --fitparam

With the derived paramaters listed under Available Computable Parameters:

------Available Retrieval Parameters-----------

╒══════════════════╤══╕
│ Param Name │ Short Desc │
╞══════════════════╪══╡
│ planet_mass │ Planet mass in Jupiter mass │
├──────────────────┼──┤
│ planet_radius │ Planet radius in Jupiter radii │
├──────────────────┼──┤
│ planet_distance │ Planet semi major axis from parent star (AU) │
├──────────────────┼──┤
│ planet_sma │ Planet semi major axis from parent star (AU) (ALIAS) │
├──────────────────┼──┤
│ atm_min_pressure │ Minimum pressure of atmosphere (top layer) in Pascal │
├──────────────────┼──┤
│ atm_max_pressure │ Maximum pressure of atmosphere (surface) in Pascal │
├──────────────────┼──┤
│ T │ Isothermal temperature in Kelvin │
├──────────────────┼──┤
│ H2O │ H2O constant mix ratio (VMR) │
├──────────────────┼──┤
│ CH4 │ CH4 constant mix ratio (VMR) │
├──────────────────┼──┤
│ He_H2 │ He/H2 ratio (volume) │
├──────────────────┼──┤
│ clouds_pressure │ Cloud top pressure in Pascal │
╘══════════════════╧══╛

------Available Computable Parameters----------

╒══════════════╤══╕
│ Param Name │ Short Desc │
╞══════════════╪══╡
│ logg │ Surface gravity (m2/s) in log10 │
├──────────────┼──┤
│ avg_T │ Average temperature across all layers │
├──────────────┼──┤
│ mu │ Mean molecular weight at surface (amu) │
├──────────────┼──┤
│ C_O_ratio │ C/O ratio (volume) │
├──────────────┼──┤
│ He_H_ratio │ He/H ratio (volume) │
╘══════════════╧══╛

Mixins

New in version 3.1.

Mixins are lighter components with the sole purpose of giving
all atmospheric components new abilities and features. For the coding
inclined you can see the article here [https://en.wikipedia.org/wiki/Mixin].

makefree

Works under: [Chemistry]

Adds new molecules or forces specific molecules in a chemical scheme to become fittable.
Molecules will behave like a Gas
and will add them as fitting parameters. Molecules can be defined similarly to free.
For example if we load a chemistry from file, normally we cannot retrieve any molecule.
If add the makefree mixin we can force specific molecules and add in new molecules into the
scheme:

[Chemistry]
chemistry_type = makefree+file
filename = "mychemistryprofile.dat"
gases = H2O, CH4, CO, CO2

 [CH4]
 gas_type = constant

 [TiO]
 gas_type = constant

[Fitting]
CH4:fit = True
TiO:fit = True

Here, CH4 will has become fittable and we injected TiO into the scheme. What happens is that
each time the chemistry will run it will first run the base scheme and then modify or inject
the molecule into the profile. Afterwhich the mixing profiles are then renormalized to unity.
This can also work for equlibrium schemes, for example using ACE:

[Chemistry]
chemistry_type = makefree+ace
metallicity = 1.0

 [CH4]
 gas_type = constant

 [TiO]
 gas_type = constant

[Fitting]
CH4:fit = True
TiO:fit = True
metallicity:fit = True

Only the free chemical scheme does not work as it is redundant.

[Optimizer]

This section deals with the type of optimizer used.

TauREx3 includes a few samplers to perform retrievals. These can be set using the optimizer
keyword:

	
	nestle
	
	Nestle sampler

	Class NestleOptimizer

	
	multinest
	
	Use the MultiNest sampler

	Class MultiNestOptimizer

	
	polychord
	
	PolyChord Optimizer

	Class PolyChordOptimizer

	
	dypolychord
	
	dyPolyChord optimizer

	Class dyPolyChordOptimizer

	
	custom
	
	User-provided star model. See Custom Types

Plotting

Along with the –plot argument for taurex, there
is also an extra program specifically for plotting to PDF
from TauREx 3 HDF5 outputs. It is accessed like this:

taurex-plot

A summary of the arguments is given here:

	Argument

	Alternate name

	Input

	Description

	-h

	–help

	
	show this help message and exit

	-i

	–input

	INPUT_FILE

	TauREx 3 HDF5 output file

	-o

	–output-dir

	OUTPUT_DIR

	Directory to store plots

	-T

	–title

	TITLE

	Title of plots (optional)

	-p

	–prefix

	PREFIX

	Output filename prefix (optional)

	-m

	–color-map

	CMAP

	Matplotlib colormap (optional)

	-R

	–resolution

	RESOLUTION

	Resample spectra at resolution

	-P

	–plot-posteriors

	
	Plot posteriors

	-x

	–plot-xprofile

	
	Plot molecular profiles

	-t

	–plot-tpprofile

	
	Plot Temperature profiles

	-d

	–plot-tau

	
	Plot optical depth contribution

	-s

	–plot-spectrum

	
	Plot spectrum

	-c

	–plot-contrib

	
	Plot contrib

	-C

	–full-contrib

	
	Plot detailed contribs

	-a

	–all

	
	Plot everythiong

Plugins

New in version 3.1.

Inspired by Flask extensions, plugins are extra packages that add
new functionality to TauREx. They allow anyone to improve and expand TauRExs capabilities
without modifying the main codebase. For example, new forward models, opacity formats,
chemistry and optimizers.

Finding Plugins

TauREx plugins usually are named as ‘taurex_foo’ or ‘taurex-bar’. The Plugin Catalogue contains
a list of plugins developed by us in the Plugins Catalogue . You can also
search PyPI for packages with keywords taurex [https://pypi.org/search/?q=taurex].

Using Plugins

Consult each plugins documentation for installation and usage. Generally TauREx
searches for entry points in taurex.plugins and adds each component into the
correct point in the pipeline

Lets take chemistry for example. Assuming a fresh install,
we can see what is available to use in TauREx 3 by writing in the command prompt:

taurex --keywords chemistry

We get the output:

╒══════════════════╤═════════════════╤══════════╕
│ chemistry_type │ Class │ Source │
╞══════════════════╪═════════════════╪══════════╡
│ file / fromfile │ ChemistryFile │ taurex │
├──────────────────┼─────────────────┼──────────┤
│ taurex / free │ TaurexChemistry │ taurex │
╘══════════════════╧═════════════════╧══════════╛

We only have chemistry from a file and free chemistry. Supposing we wish to make use of FastChem.
In the previous version we could easily load in an output from FastChem but what
if we wanted to perform retrievals on the chemistry? We would need to write a wrapper of somekind
that loads the C++ library into python before blah blah blah. A considerable amount of effort
and likely someone else has solved the problem beforehand.
This is what plugins solve!

With 3.1, we can now install the full FastChem chemistry code into TauREx3 with a single command:

pip install taurex_fastchem

Easy!

Now if we check the available chemistries we see:

╒══════════════════╤═════════════════╤══════════╕
│ chemistry_type │ Class │ Source │
╞══════════════════╪═════════════════╪══════════╡
│ file / fromfile │ ChemistryFile │ taurex │
├──────────────────┼─────────────────┼──────────┤
│ fastchem │ FastChem │ fastchem │
├──────────────────┼─────────────────┼──────────┤
│ taurex / free │ TaurexChemistry │ taurex │
╘══════════════════╧═════════════════╧══════════╛

We now have FastChem available!!!

Tip

It must be stressed that downloading and installing FastChem is not necessary,
the plugin includes the precompiled library in the package.

Now we can use FastChem in the input file with retrievals:

[Chemistry]
chemistry_type = fastchem
selected_elements = H, He, C, N, O
metallicity = 2

[Fitting]
C_O_ratio:fit = True
C_O_ratio:priors = "LogUniform(-1,2)"

Building Plugins

While PyPI [https://pypi.org/search/?q=taurex] contains a growing list of TauREx plugins,
you may not find a plugin that matches your needs. In this case
you can try building your own! Read Plugin Development to learn how
to develop your own and extend TauREx!

Library

This section of the documentation deals with
using the taurex library to construct your own
scripts!

	Quickstart
	Setup

	Loading cross-sections

	Profiles
	Adding molecules

	Building the model

	Retreivals

TauREx 3.0

Setup

Lets setup the notebook. If the plots arent interactive then run this part again

[56]:

import matplotlib.pyplot as plt
%matplotlib notebook
from ipywidgets import *
import numpy as np
import sys

And lets disable logging

[57]:

import taurex.log
taurex.log.disableLogging()

Loading cross-sections

We need to point TauREx3 to our cross-sections. This is handled by the caching classes. Once a cross-section is loaded it does not need to be loaded again. First lets import the classes:

[58]:

from taurex.cache import OpacityCache,CIACache

Now lets point the xsection and cia cachers to our files:

[59]:

OpacityCache().clear_cache()
OpacityCache().set_opacity_path("/path/to/xsec")
CIACache().set_cia_path("/path/to/cia")

TauREx3 is now ready to use them! For fun lets, try grabbing the H2O cross-section and plotting it. First tell the OpacityCache function to grab it.

[60]:

h2o_xsec = OpacityCache()['H2O']

Now we can compute the cross-section for any pressure and temperature! Lets try 2000K and 10 Pa.

[61]:

h2o_xsec.opacity(2000, 10)

[61]:

array([8.88161244e-26, 2.87333415e-26, 1.60882258e-26, ...,
 1.56910297e-33, 1.28513545e-33, 1.95